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EQUATIONS OF A SIMPLE FLAME SOLVED BY 
SUCCESSIVE APPROXIMATIONS TO THE SOLUTION 

OF AN INTEGRAL EQUATION * 

G.  Klein 

ABSTRACT 

The problem of an idealised flame -whose underlying 
chemical reaction is unimolecular,  reversible,  and of the 
first order, which has already been treated and solved in the 
references quoted below, is reconsidered here (kinetic energy 
of the gas stream being neglected).    Its solution is made to 
depend on the solution of an integral equation which contains 
an unknown parameter whose eigenvalue has to be determined. 
This equation is solved by a method of successive approxima- 
tions. 

* This work was carried out at the University of Wisconsin Naval 
Research Laboratory under Contract N7 onr-28511 with the Office 
of Naval Research. 
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1. INTRODUCTION 

The problem of an idealized flame -whose underlying 
chemical reaction is unimolecular,  reversible,  and of the first 
order, which has already been treated and solved in the refer- 
ences quoted below, is reconsidered here (kf.netic energy of the 
gas stream being neglected).    Its solution is made to depend on 
the solution of an integral equation which contains an unknown 
parameter -whose eigenvalue has to be determined.    This equa- 
tion is solved by c. method of successive approximations. 

Except for minor and obvious deviations*,  the nota- 
tion fcs the same as that used in the first reference quoted; equa- 
tions there are referred to on the left margin. 

•The only ones being (cf.  equations 1. 1-1.3) 

i     d (11.7-27)       fZ-jjr (-eliminating the distance variables) 

(11.7-25)      P(X,r)- -f (x,r)       (-an essentially positive quantity) 

r    i 
(11.7-31) b*   "    - 

X-l 
(-for conciseness) 

iimrwi »—mi    n,ir»n»iriw.m imawiJMWHiiu. 
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Flame equations.     These are,  in terms of dimensionless variables and 
parameters,  the equations of continuity (or chemical reaction),  diffusion, 
and energy (or thermal conduction);. 

6$ | 
\ (11.7-25) 9 dr *~ /**R(*>r) > 1.1 

(11.7-28) f^-   J(X-Q) , !.2 

i 
I 
\ 
V 

1.3 (11.7-31 £ ^CG-G^J-CT.-r) 

Hot; Boundary conditions.     At the hot boundary chemical reaction, 
diffusion and thermal conduction cease.    Thus 

(11.7-32) R(*„,O*0 , 1.4 

(11.7-34) x.p- G«* 1.5 

Equation   1.3   is the integrated energy balance equation,  and by suitable 
choice of the constant of integration the third boundary condition, that 
the temperature gradient must vanish, 

?(c*o)'°    > 1.6 

has already been taken care of. 
\ 

Cold boundary conditions.     If one assumes a conventional functional 
form for the reaction rate,  where the latter does not actually vanish at 
the cold boundary temperature,   some care is needed in the stipulation of 
the cold boundary conditions.    Experimentally,  however,   and in computa- 
tion where in any case one confines oneself to a limited number of decimal 
places,  the reaction rate can be taken as zero at and near the cold boundary 
temperature.    Thus in practice there is no doubt what the conditions should 
be,  they are analogous to those at the hot boundary,  viz. 

R(*o,O-0 

(11.7-35) X0-  G0
al > 

1.7 

1.8 

f (O-o l-9 
c 

Auxiliary quantities.     It is convenient to define the known linear 
function 

Ax„+b(vr) 1.10 

and the parameter | 1   \\ 
9. 3    h >,x 
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Elimination of the mass rate of flow.   We consider the temperature 
gradient and the concentration as the primary dependent variables. 
From   1.3,    1.5,    and 1.10, 

G-X    + bf     y 1#12 

so that if the temperature gradient is known,  the fractional mass rate of 
flow,    G,    can be readily found. 

Fundamental simultaneous equations.     With    1.12,     1   10   equations 
1.1,    1.2   may be written in the form 

1. 13 

1. 14 

These equations have to be satisfied simultaneously,  the solutions being 
subject to the boundary conditions.    It should be noted that this is an 
eigenvalue problem;   the parameter q in   1.13 is not known and depends on 
the boundary conditions. 

Special cases.       In the following two cases the problem simplifies 
considerably: 

When &*\ ,    it is clear from 1. 10   that    1. 14   is satisfied by 

X       •* X 
6*1 1. 15 

and hence the problem reducee to the solution of the single differential 
equation 

WhenS»0,   equation   1. 14   gives 

(11.7-44) K     -r 
b«0 J»0 1. 17 

which when substituted into    1.13   again leads to a single differential 
equation, 

1. 18 

This latter equation simplifies further if the reaction rate is linear in the 
fuel gas concentration. 

•   • - »i        • aaaijij   u 
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Reaction rate.      The reaction rate may be expanded: 
SR(x,r>" 

R(x,r)-P(^,c)+(x-x0-)| 
dx 

It -will now be assumed that it is Unear in the concentration.    Thus 

R(x,r) .(x-x.)f (r) +R(x„,c)     , 

1.19 

1.20 

where  if (r)    is a rapidly increasing function of C(cf. graph 1J and the first 
term on the right is the predominant one.      Clearly,   also 

(?(x,r)- (x-x   )y^r) + R(x*r) 

It is useful to define the function      (cf.   graph 2) 

For numerical illustration we shall take 

(11.7-29). 

1.21 

1.22 

R(x,r)-  xe     -(i-x)e 1.23 

(cf.  graph 3) which has already been used in the original treatment of this 
problem;   (cf.  references 1, 2)*   so that in   this case   (cf.  graph 1) 

*jr(r) - e      + e     r 
1.24 

The present method is,  however,   not restricted to this particular 
functional form. 

* The only constants entering are 
.50 

OX 

I). S.S3\   M.2 

fi= I.OSH    763 

q       i 
cf.  footnote 22,  p.   770 of reference  1 ,  where   O •   *_.   "T   . 
The independent variable   r  i» related to the temoerature  by    r*    ~7Z• 
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cf.   1.20,   1 
and table 1 
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cf.   1.22~ 
and table 1. 
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Graph  5 
cf.   I. 20,  1    23,   1.X0,   1.1.6, 
and table 1. 
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2.  METHOD OF SUCCESSIVE APPROXIMATIONS 

Outline.   The method of solution adopted here is one of successive approx- 
imation to the temperature gradient and it is essentially contained in the relations 

2. 1 

(cf.   1.13,   1.14),  together with the boundary conditions. 

Discussion.     The differential equation 1.13 may be turned into an integral 
equation,   so t^at with the boundary conditions 1.6,     1. 9   one has 

-*i z** — • 

- <i 

Thusy 

f*"ffoc,t), t, 
a? 

t 

2.4 

2.5 

r> 

1 ^-r-     J t 
R(x.r)     , 

dr 2.6 

Also,  by 1. 14,   1. 10, 
d(x-X*) I      ,       *v       . b_i 

dr fc, 5t 
and from 1. 25 

u-x") -     x* b    , 2 7 

2.8 

Suppose an approximation 4.    to f-    is known.    It is assumed that 
2. 7   gives a corresponding approximation to x-X'"    ,  and ihat the two together 
can then be used to give a better approximation,^ ***>, from 2. 3,   with the use 
of 2.8.     Successive approximations to the parameter   0   are similarly found 
from 2.6.      The method is clearly justified if one obtains increasingly convergent 
results as is the case in the numerical example considered.    Since the convert 
gence is fairly rapid,  almost any suitable lowest approximation is found to 

I yield unique results;   the choice of lowest approximations for particular values 
of 5    will be considered in the following sections. 

! 

i 
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Scheme of successive approximations.      In accordance with this scheme 
we thus have,   when       a(>>>       is given, 

b 

Cx<*_x*).  * 

,(V'.N_   D/     *      N   .   /    <">        * R(x   ,c)« R(x >) + (*   ~x*)f O)     , 

2.9 

2.10 

2. 11 
Cv+i) r«-rc c 

•^WO'"^ k   pfiSa * 

» -i j M     dr   - Cr^-r) 2.13 
a 
0 r 

The ratio in the integrals cf 2. 12,   2. 13     for    t^c*, is found by 
application of L'HSpital's rule.      (cf.  graph 4) 



• 

Graph 4 
cf. table 3 

Graph 5 
cf.  table 3 

too 

300 

Series 8 
WIS-ONR-8 
9 June 1954 

\ 

"*-. 

 x-  if — 

i-1 

K^- 

/"      <5-34 
i 
i 

200 

X v 

100   _ 

—X- 

b'O 

Diagram illustrating the 
rapidity of convergence of 
successive approximations 
to the parameter a 

J I I L 
f 5 

«/0 

-4 
I 

I 

_L_ L 

Graph suggesting 
linear dependence of 
the parameter on the 
diffusion coefficient 

ft        1 

h 



i.  CASE OF DIFFUSION NEGLIGIBLE 

Series 8 
WiS-ONR-8 
9 June 1954 

10 

Method.     In the case of     o^ 0      the problem depends essentially on the 
solution of equation   1.18   which with   1.21   becomes 

Hence,   cf.    2.12,     2.13,     1.22,   2.2 
Ln/..#. 

3.1 

3.2 

3.3 

MM) *     .      (V-fi) 
* •    V    •+ b< 

In the calculation of     3. 2;     3. 3,    use is made of 

Rfr.ol r -^F— is. 

L    v{fcf^>*{ r«x*r> 

»' 
(y-(> -/ 

3.4 

3.5 

Lowest approximation.     The following choice of a lowest   ('input') 
approximation has been found to lead to convergent results;   we take as 
lowest approximation the solution of   3. 1 with the last term neglected, 
viz.    (cf.    3. 2) 

3.6 

where 

t, 

lo) r„-z; 

k^(r0,O 3.7 

That is, 

Also,  by 3.4,    3. 8,    1.10 , 

E*-C 

'ao IN*     O 
which may also be written 

X     - X, 

X   -  X o oo 

3.8 

3.9 

3.10 
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Both the functions    3.8,    3. 10   have the character one would expect of the 
actual solutions. 

For the calculation of the following approximation} i> * / , one needs 

4.  CASE OF LINEAR DECREASE OF FUEL GAS 

Method.      In the case of    del the outstanding feature is 

3.11 

X - x 4.1 

cf.   1. 15,   and it remains to solve the equation,    cf.   1.16 

4.2 

Hence the scheme of successive approximations,    2. 12,   2. 13,   simplifies 
to 

1 
(V+l) 5--5. OP o 

f'-R(x*r)   , 
J    —T7T— dr 

4.3 

c*0    <**  fr-R0[V) 
7       -* j ^<*>     dr   - (r.-r)     ^ 4.4 

with 

[   fr     J 

f dR(x*of 

4.5 

Lowest approximation.        Here we have arbitrarily taken, the parabolic 
approximation 

(o)       I a     (r.-rXr-r„) 
-o»      o 

In view of   2. 5   it is clear that the constant coefficient on the right of 
4. 6   is immaterial;   it may at worst give an unrealistic value for C;> 

Clearly 
R(x ,r) 

1 
(*) 

dR(x ,g) 

dr 

4.6 

4.7 



i4 

.15 

Graph 6 
cf.  tables  1, 2, 3 

Note:   It follows from <iqu. 
that any a.  curve has its maximum 
on the corresponding <)R(x,c> curve . 
Also,  the area under any <y  curve 
is equal to the area under the cor res 
ponding oR(x;c)curve. 

•OS 
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5    GENERAL CASE 

Method.     In order to simulate conditions of a real flame one should take 
,   and the relations   2.9-13   have to be used in their full 0< £ < I 

generality. 

The solution of 2. 9   with 2. 10    may be written 

x    - x   « ^LJL^ dc 
t>e f 'AC h 6z 

at 5.1 

where   cm    is any value, ze < cm* z"o»,but most conveniently taken in the 
neighborhood where one expects the maximum of   9-    to occur.    The suc- 
cessive approximations are then obtained fx>m        5. 1,    2. 12,    and 2, 13, 
with the use of     2. 11   and /_, ,\ 

dVv) ] c 

d(X     - X   )( 

•1- 1 

jr 
C ~3 

/     + 

(Vj 

L   dr J 

5.2 

5.3 

*m, • (- ^j • *<->[- ^ / 5.4 

Ru^.y "   df?rx<v),r)7      / - J,<">-l 

*» 
dc 5.5 

Lowest approximations.        One could again take     4.6     or 3.6     as 
lowest approximations. 

%»\ 

Since in the present treatment we have already calculated    &• and 
, the following form suggests itself **° 

(i - 0 ) CL- 5.6 

which has in fact been found to lead to convergent successive approximations. 

>wing 

h'Sh;*       " 
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Starting from 5.6   use has to be made of the following formulae which 
we state for sake of complete nes s;    

n 5.7 [-^i;i[^a^i 
[So]     -ij[^T<^0*C>«W)-0*<l,..P*#l 1   > 

(6) 

de 
- b ?S.i 

dr 
0-i) 

d<u 
J«o 

dr 

5.8 

5.9 

; 

and relations     5.3-5   for  V = o. 

I 
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Graph 8 
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6. ON THE NATURE OF THE SOLUTION 

Equation 1, 13,   and more concretely,  equation 4. I,   suggest a general 
consideration of the differential equation of the form 

•where 

6.1 

F- F(x) , 6.2 

increases asymptotically from zero,   rises to a maximum,  and has its 
first   (and possibly only)    zero   at   x»x,,   so that 

(F)x '0,       (F')„   <0     . 6.3 

Throwing   6. 1   into the form 

*       ,_    F 

one obtains immediately the following properties connected with tiie 
integral curves: 

\ 
Locus of stationary points: 7m r(x)      ( X + X, )        • 6. 5 

Locus of points of infinite gradient: Y*    0        ,  ( X * X,)      j 6.6 
i 

Locus of points of gradient unity: X "   * (Y * 0)      ' 6.7 

By the standard method one finds from 6. 1 the locus of the points 
of inflexion: 

y-if.d tfr^F) 
which is imaginary where   F   >   ;r 

6.8 

There is evidently a singular point for the integral curves at (x,,0)and 
it is found to be a saddle point. From 6.1 it is easily shown that the two 
singular solutions which we denote by    a      and    u    where 

A   O W *    / 

(t*V°   »<¥,'),>0    ' 6.io I A, 
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Graph 10 
cf.   section 6 Series 8 
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Function F(x) 

———    First Singular Solution 

•—••—   Second Singular Solution 

Locus of Points of Inflexion,-   /  , / /  / 

X • 
/' 

/ 
S' 
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have their first two derivatives at  ( xt t o)       given by 

<H\ i       I I  - 3 

6.11 

6. 12 

It is the singular solution     u       which is of interest in the flame problem. 
Cf.    Graph 10. 

Also,   the locus of the points of inflexion has its first two derivatives 
at     ( x( , o) given by 

(y'l - iOVT^T7) 

:y> - T7 
Y 

X,      Lf i-ZV 

6.13 

6.14 
> 

so that the two branches of the locus of the points of inflexion,    Y,    and 
y      ,    are tangent to the singular solutions.    One finds the following 

properties: 

At   («, ,o) 

(-sign) ¥• »y <o 6. 15 

{+ sign) 
F F" 

6. 16 
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Results 

The validity of the method in this simple case suggests that even more general 
.    flame problems may be treated as integral   equation problems to be solved by a method 

of successive approximations. 

In the particular c&se considered the eigenvalue parameter    q_     ,  related to the 
flame velocity,   appears to depend linearly,   or very nearly so,  on  <$   which is re- 
lated to the diffusion coefficient.    (If this dependence is rigorous,  it should be 
possible to justify it analytically.) 

Generalizations 

It may be of interest to investigate the (minor) modifications required when the 
specific heats of the components are unequal,   and when the thermal conductivity 
and diffusion coefficient are not constants; also the case where the kinetic energy 
of the gas stream is not neglected. 

It would be of more immediate interest,  however,  to essay the method on a more 
general idealized flame problem in which the chemical reaction is of the second order. 
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List of Symbols 

(in the order in which they occur) 

(11.7-27) CL    ,    reduced temperature gradient 

(11.7-16) r    ,    reduced temperature 

P   ,    reaction rate (decrease of fuel) cf. footnote p.   1 

(11.7-29) -f   5    reaction rate (production of fuel)" * »« 

b ,    a constant,  related to specific heat, cf.  H " 

y ,    ratio of specific heats "      •' M 

reduced energy of reaction,    1.23     *      ** " 

fraction of the mass rate of flow of fuel 

reduced mass rate of flow 

mole fraction of fuel 

reduced coefficient of diffusion 

Q   ,    eigenvalue parameter,    1.11 

ijr  ,    a function of     C       ,    1.20,    1.24 

Y   »    the latter function integrated,     1, 22 

(11. 7-16) T  »    absolute temperature,  cf. footnote p, 4 

Suffices   0   and   °o refer to the cold and hot temperature boundary,  respectively. 
Exponents  (**)  refer to the order of approximation. 

Section   6   only:: 

X  ,    independent variable 

[L. ,    dependent variable 
* 

r ,    a function of   X 

X .     y    ,    ordinates of various loci - not solutions of   6. 1 

(11.7-22) 
fi 

(11.6-3 ) G 

(1.1. 7-19) h 
X 

(11.7-23) b 
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(Basic Functions) 
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2.2 

1    ••' 

T r 
3 

"5T(r,rJ 10 **<***    ) 

3O00 c«=. 20 6.767 663 0 .004 391 
- 

2900 ,19 3... 5.691 61       ! .414 7 .041 265 2.141  Z 
2800 18 6- .. 4.714 36 761 2 .078 139 3.553 7 
2700 . 18 3. 875  25 1.047 3 . 115 013 4.3638 
2600 . 17 3... 3.l?i 14 1.279 8 . 151 888 4.691 5   M 
2500 . 16 6... 2.4U2 45 1.466 8 .188 762 4.649 0 

2400 . 16 1.932 65 1.612 9 .225 637 4.338 8 
2300 . 15 3.. . 1.472 35 1.726 4 . 262 511 3.852 6 
2200 . 14 6... 1.094 38 1.811 1 .299 385 3.269 
2100 . 14 .790 83 1.873 9 .336 260 2.655 8 
2000 . 13 3... ^553 25 1.913 0 .373 135 2.062 7 

1900 .12 6.., .372 77 1.948 9 .410 009 L.527 7 
1800 . 12 . 240 40 1.968 8 . 446 884 1.074 0 
1700 ,11 3.. . .147 24 1.981  7 .483 758 .712 2 
1600 . 10 6. . . .084 82 1.989 1 .520 633 .441 6 
1500 . 10 ..045 40 1.993 4 . 557 507 .253 1 

1400 .09 3... .02.2 28 1.995 5 .594 381 . 132 1 
1300 .08 6.. . .009 75 1.996 6 .631 256 .061 5 
1200 .08 .003 73 1.996 9 . UUO    1JU .024 9 
1100 .07 3. .. .001 20 1,997 1 .705 005 .008 4 
10G0 .06 6.., .000 31 1.997 1 . 741 879 .002 3 

900 .06 .000 06 1.997 2 L . 778 754 .000 5 
800 .05 3... .000 01 1.997 2 .815 628 .000 1 
700 ,04 6.. . .000 00 z 1.997 2 .852 502 .000 0 Z 
600 .04 .000 00 1.997 2 .889 377 .000 0 
500 .03 3... .000 00 1.997 2 .926 251 .000 0 
400 .02 6. .. .080 00 1.997 2 .963 127 .^000 0 

300 rr/.02 .000 00 1.997 2 1 .000 0 

Graph I Graph 2 Graph 8 Graph 3 
P- 5 p.   5 p. 15 p.   6 

Eq.   1. 24 Eq.   1. 22 Eq.   1. 17 Eq.   1. 16 

fdRCx**)]   . 
L    dt    \c9 
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I 

I 

. 

?S~o %., 
X 

5^ 0 1$- 3/f d- V4 *«-c 

9 0 .004 391 0 .004 4 0 
.027 72 .021  61 . 194 6 .021 7 .049 5 . 006 6. .. 
.050 36 .040 24 . 356 7 .040 4 .094 8 .013 3. .• 
.068 38 .056 00 .493 2 .056 2 . 140 0 .02 
.082 25 .069 00 .606 8 .069 4 . 185 0 .026 6. . . 
.092 51 .079 40 . 700 4 .079 9 . 229 7 .033 3.. . 

.099 48 .087 31 .775 9 .087 9 .274 1 .04 

. 10 3 72 .092 92 .836 2 .093 5 .318 1    [ .046 6. . . 

.105 51 M .096 41 .883 0 .097 1 .361 8   [ .053 3. . . 

. 105 35 .097 95 M .919 0 098 5 M .405 0   1 .06 

.103 47 . 097 77 .945 4 .098 3 .447 7 .066 6. . . 

. 100 31 .096 09 .964 8 .096 6 .489 8 .073 3.. . 

.096 05 .093 11 .978 2 .09-> 5 .531 0   I .08 

.091 02 .089 07 .987 2 .089 4 .571 7   ! 

.611 7 
.086 6. .. 

.085 38 .084 19 .992 9 .084 6 .093 3.. . 

.079 34 .078 66 .996 3 .078 8 .650 8 . 10 

.073 02 .072 66 .998 3 .072 7 .688 9 . 106 6. . . 

.066 54 .066 38 999 3 .066 4 .726 1 .113 3. . . 

.059 94 .059 89 999 7 .059 9 .762 0 . 12 

.053 31 .053 29 . 999 9 .053 3 .796 5 . 126 6... 

. 046 66 . 046 66 1 .000 0 P .046 7 .829 7 . 133 3. .. 

.040 00 . 040 00 1 .000 0 .040 0 .861 3 . 14 

.033 33 .033 33 1   000 0 .033 3 .891 4 . 146 6... 

.026 67 .026 67 1 .000 0 .026 7 .919 3 . 153 3. .. 

.020 00 .020 00 i .000 0 .020 0 .944 9 . 16 

.013 33 .013 33 1 ,000 0 .013 3 .967 8 . 166 6... 

.006 67 .006 67 1 .000 0 .006 7 .986 8 . 173 3. . . 

0 0 1 0 1 . 18 

Graph 6 Graph 6 Graph 8 Graph 8 
p.   12 p.  12 p.   1$ p.  15 

.   • 

rdo.   i 
_J£2-|   --4.5T7 [<W    =-3.U 

• 

i"3^^ 
! 
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Series 8 

WIS-ONR-8 
9 June 1954 
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TABLE 3 
(Parameter Values) 

Lowest a- •0 8« l s* • % 
approx. Eq 

1 

3.8 
Cvi 

Eq. 4.6 Eq. 
(V) 

56   <*> 

0 162.9 901.3 
1 124.7 689.5 136.0 752 348 1 923 
2 122.5 677.4 458. 1 2 534 328 1 814 
3 121.6 672.6 383.0 2 119 337 1 862 
4 414.4 2 292 334 i 849 
5 398.5 2 204 
6 407.2 2 252 
7 402.5 2 226 
8 405.0 2 240 
9 403.5 2 232 

Values 

' 

previously 672 2 240 1 840 
obtained by 
numerical 
integration, 
(cf, ref.   2) 

cf.  graphs 
4 & 51 

Note;      Thcugh the numerical results are correct to three significant figures, 
no painstaking accuracy has been aimed at in the computations as the object has 
been solely to demonstrate the validity of the method;     thus,   all integrations 
have been carried out by trapesoidal summation with only 27 equal intervals. 
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